Mines-Ponts 1989, Option M, Math.I

Notations et objectif du problème

Soit E un espace vectoriel euclidien de dimension $n \ge 2$ sur le corps des réels : le produit scalaire et la norme associée sont notes $(\cdot|\cdot)$ et $\|\cdot\|$.

Étant donné un sous-espace vectoriel G de E on note G^{\perp} l'orthogonal de G dans E. On dira qu'un sous-espace vectoriel F de E est somme directe orthogonale de F sous-espaces vectoriels F_1, F_2, \ldots, F_r de E si $F = F_1 \oplus F_2 \oplus \ldots \oplus F_r$, et si ces sous-espaces sont orthogonaux deux à deux.

Dans tout le problème, on suppose donnés deux sous-espaces E_1 et E_2 de E dont E est somme directe orthogonale, de dimensions respectives non nulles p et n-p. On suppose données des bases orthonormales $B_1=(e_1,e_2,\ldots,e_p)$ et $B_2=(e_{p+1},e_{p+2},\ldots,e_n)$ de E_1 et de E_2 , dont la réunion $B=(e_1,e_2,\ldots,e_n)$ fournit une base orthonormale de E.

On désigne respectivement par I_1, I_2 et I les applications identiques de E_1, E_2 et E et par les mêmes symboles les matrices-unités associées.

On suppose données une application linéaire f de E_1 dans E_2 et une application linéaire g de E_2 dans E_1 telles que, pour tout couple (x_1, x_2) d'éléments de E_1 et E_2 on ait

(1)
$$(f(x_1)|x_2) = (x_1|g(x_2)).$$

L'objectif du problème est d'étudier l'endomorphisme φ de l'espace E qui, à tout élément x de E, écrit sous la forme $x = x_1 + x_2$ (où $x_1 \in E_1$ et $x_2 \in E_2$), associe

(2)
$$\varphi(x) = kx_1 + f(x_1) + g(x_2),$$

où k est un nombre réel donné.

Dans la première partie, on détermine la matrice associée à φ ainsi que le noyau et l'image de cet endomorphisme φ . Dans la troisième partie, on étudie les valeurs propres et les sous-espaces propres de φ dans le cas où le réel k est nul et, dans la quatrième partie, les valeurs propres et les sous-espaces propres lorsque ce réel k est non nul. La deuxième partie est consacrée à l'étude, utile pour la suite, des valeurs propres et des sous-espaces propres des applications $g \circ f$ et $f \circ g$.

Partie I

1°) Matrice associée à φ .

- a) Soit S la matrice associée à f dans les bases B_1 et B_2 ; déterminer en fonction de S la matrice associée à g dans ces bases B_2 et B_1 .
- b) Montrer que, f étant donnée, il existe une application linéaire g et une seule satisfaisant à la relation (1).
- c) Exprimer, à l'aide des matrices I_1 et S, la décomposition par blocs de la matrice T associée à φ , dans la base B.

2°) Étude des noyaux et des images de f et de g.

- a) Montrer que Ker $f = (\operatorname{Im} g)^{\perp} \cap E_1$ et Ker $g = (\operatorname{Im} f)^{\perp} \cap E_2$.
- b) En déduire que E_1 est somme directe orthogonale de Ker f et Im g. Prouver que l'injectivité de f équivaut à la surjectivité de g, et que dans ces conditions $p \leq n p$.
- \mathbf{c}) Énoncer des résultats analogues pour les sous-espaces vectoriels $\operatorname{Ker} g$ et $\operatorname{Im} f$.
- **d**) En utilisant a), exprimer $(\operatorname{Ker} f)^{\perp}$ et $(\operatorname{Ker} g)^{\perp}$ à l'aide de $\operatorname{Im} g$ et $\operatorname{Im} f$.

3°) Étude du noyau de φ .

- a) On suppose k=0. Exprimer le noyau Ker φ à l'aide de Kerf et de Kerg.
- **b**) On suppose $k \neq 0$. Déterminer le noyau de φ . Pour cela, on considérera un élément x de Ker φ , écrit sous la forme $x = x_1 + x_2$ et on prouvera que x appartient à Ker $f \cap \text{Im } g$.

4°) Étude de l'image de φ .

- a) Prouver que l'endomorphisme φ est symétrique.
- **b**) En déduire $\operatorname{Im} \varphi$ à l'aide de $\operatorname{Im} f$ et de $\operatorname{Im} g$.

Partie II : Éléments propres de $g\circ f$ et $f\circ g$

Pour tout nombre réel λ , on note

$$U_{\lambda} = \operatorname{Ker}(\lambda I_1 - g \circ f), \quad V_{\lambda} = \operatorname{Ker}(\lambda I_2 - f \circ g), \quad F_{\lambda} = \operatorname{Ker}(\lambda I - \varphi).$$

- 1°) Indiquer des propriétés des valeurs propres et des sous-espaces propres F_{λ} de φ .
- 2°) a) Montrer que $g \circ f$ est un endomorphisme symétrique de E_1 et que les valeurs propres de cet endomorphisme sont réelles et positives.
- **b**) Étudier de même les valeurs propres de $f \circ g$.
- **3°)** Prouver les deux relations $U_0 = \operatorname{Ker} f$ et $V_0 = \operatorname{Ker} g$.
- ${\bf 4^o}$) a) Soit λ un nombre réel non nul. Montrer que λ est valeur propre de $g \circ f$ si et seulement si λ est valeur propre de $f \circ g$: établir $f(U_\lambda) \subset V_\lambda$, et $g(V_\lambda) \subset U_\lambda$.
- **b**) Démontrer que si le réel λ est une valeur propre non nulle de $g \circ f$ les deux inclusions précédentes sont des égalités. Comparer les dimensions de U_{λ} et V_{λ} .

5°) Étude d'un exemple.

On suppose p=3, n=4 et S=(a,b,c) où a,b,c sont trois réels donnés vérifiant $a^2+b^2+c^2=1$. Déterminer les valeurs propres et les sous-espaces propres de $f\circ g$ et de $g\circ f$ et vérifier les résultats précédemment obtenus.

Partie III : Éléments propres de φ lorsque k=0

On se propose de déterminer les sous-espaces vectoriels propres F_{λ} de φ en fonction des sous-espaces vectoriels propres U_{λ} de $g \circ f$ et de V_0 ; le réel k est nul dans cette partie.

- 1°) Exprimer F_0 à l'aide de U_0 et V_0 . En déduire que φ est un automorphisme de E si et seulement si f est un isomorphisme de E_1 sur E_2 .
- **2°)** On désigne par σ la symétrie de E associée à la décomposition de E en somme directe $E = E_1 \oplus E_2$, définie par $\sigma(x) = x_1 x_2$, lorsque $x = x_1 + x_2$.
- **a**) Montrer: $\varphi \circ \sigma = -\sigma \circ \varphi$.
- **b**) En déduire que pour tout réel λ , $\sigma(F_{\lambda}) = F_{-\lambda}$,.
- c) En déduire que les valeurs propres non nulles de φ sont deux à deux opposées et comparer les dimensions des deux sous-espaces propres de φ correspondants.
- 3°) Soit λ un nombre réel non nul. On note h_{λ} l'application de E_1 dans E définie par : $h_{\lambda}(x_1) = \frac{1}{\sqrt{2}}[x_1 + \frac{1}{\lambda}f(x_1)]$.
- a) Prouver que $F_{\lambda} = h_{\lambda}(U_{\lambda^2})$. (On pourra établir successivement les deux inclusions opposées.)
- **b**) Montrer que, pour tout couple (x_1, y_1) d'éléments de U_{λ^2} ,

$$(h_{\lambda}(x_1)|h_{\lambda}(y_1)) = (x_1|y_1).$$

- c) En déduire que λ est valeur propre de φ si et seulement si λ^2 est valeur propre de $g \circ f$.
- ${\bf 4}^{\bf o}$) ${\bf a}$) Établir que E est somme directe orthogonale des sous-espaces vectoriels $\operatorname{Ker} f$, $\operatorname{Ker} g$, $F_{\sqrt{\mu}}$ et $F_{-\sqrt{\mu}}$, où μ parcourt l'ensemble des valeurs propres non nulles de $g \circ f$.
- b) On se place dans le cas particulier où f est un isomorphisme de E_1 sur E_2 . Alors n=2p. On désigne par F_+ (respectivement par F_-) la somme directe des sous-espaces propres $F_{\sqrt{\mu}}$ (respectivement des sous-espaces propres $F_{-\sqrt{\mu}}$), où μ décrit l'ensemble des valeurs propres de $g \circ f$.

À partir d'une base orthonormale B'_1 de vecteurs propres de $g \circ f$ construire une base B'_+ de F_+ , et une base B'_- de F_- . En déduire une base B' orthogonale de vecteurs propres de φ .

c) On se place toujours dans le cas où f est un isomorphisme de E_1 sur E_2 . Exprimer la matrice de passage Q de B à B' en fonction de la matrice de passage P de B_1 à B'_1 , de la matrice S et d'une matrice D diagonale dont l'ensemble des éléments diagonaux est égal à celui des valeurs propres de $g \circ f$.

Partie IV : Valeurs propres de φ lorsque $k \neq 0$

Dans cette partie le réel k est différent de 0.

- ${\bf 1}^{\bf o}$) ${\bf a}_{\bf i}$ Déterminer F_0 ; à quelle condition le réel 0 n'est pas valeur propre de φ ?
- b) Déterminer F_k ; à quelle condition le réel k n'est pas valeur propre de φ ?
- c) Démontrer que si λ est une valeur propre de φ différente de 0 et de k, les éléments, différents de 0, de F_{λ} ont des composantes simultanément différentes de 0.
- 2°) a) Soit λ un réel différent de 0 et de k: établir, avec les notations de la question III 3° :

$$F_{\lambda} = h_{\lambda} (U_{\lambda(\lambda - k)}) .$$

- \mathbf{b}) Montrer que $\frac{k}{2}$ ne peut être valeur propre et que les valeurs propres de φ vérifient des inégalités simples.
- **3°)** a) Exprimer $\varphi \circ \sigma + \sigma \circ \varphi$ à l'aide de σ et de I.
- b) Soit λ une valeur propre de φ différente de 0 et de k. Établir que le réel $k-\lambda$ est valeur propre de φ en montrant qu'il existe un réel a_{λ} tel que :

$$(a_{\lambda}I + \sigma)(F_{\lambda}) \subset F_{k-\lambda}$$
.

 $\mathbf{4}^{\circ}$) En déduire la liste des sous-espaces propres F_{λ} de φ dont la somme directe orthogonale est égale à E.

FIN DU PROBLEME