Concours commun 1996 des Ecoles des Mines d'Albi, Alès, Douai, Nantes

Epreuve de Mathématiques, Sup MPSI, PCSI, PTSI et Spés, Mardi 21 Mai 1996

Probleme 1

1. On a:
$$A = \begin{pmatrix} 0 & -2/3 & -2/3 \\ 2/3 & 0 & -1/3 \\ 2/3 & 1/3 & 0 \end{pmatrix}$$

$$B = A^2 = \begin{pmatrix} -8/9 & -2/9 & 2/9 \\ -2/9 & -5/9 & -4/9 \\ 2/9 & -4/9 & -5/9 \end{pmatrix}$$

$$C = A^3 = \begin{pmatrix} 0 & 2/3 & 2/3 \\ -2/3 & 0 & 1/3 \\ -2/3 & -1/3 & 0 \end{pmatrix} = -A$$

$$U = A^4 = -B = \begin{pmatrix} 8/9 & 2/9 & -2/9 \\ 2/9 & 5/9 & 4/9 \\ -2/9 & 4/9 & 5/9 \end{pmatrix}$$

2. On en déduit que $A^5 = A$ mais $\{U, A, B, C\}$ n'est pas le sous-groupe de $GL_n(R)$ engendré par A: A n'est même pas inversible. Toutefois, on a la table de multiplication:

Ī	×	U	A	B	C
	U	U	A	B	C
	A	A	B	C	U
	B	В	C	U	A
	C	C	U	A	B

donc $\{U, A, B, C\}$ a une structure de groupe multiplicatif commutatif, l'élément neutre étant U. 3. On a vu que: UU = U donc u est un projecteur.

Le vecteur $\vec{v} = x\vec{i} + y\vec{j} + z\vec{k}$ est un élément de ker u si et seulement s'il vérifie le système:

$$\begin{cases} 8x + 2y - 2z &= 0\\ 2x + 5y - 4z &= 0\\ -2x + 4y + 5z &= 0 \end{cases}$$

ce qui est équivalent à:

$$\begin{cases} 8x + 2y - 2z &= 0\\ 2x + 5y - 4z &= 0\\ y + z &= 0 \end{cases}$$

soit: 2x = -y = z.

 $\ker u$ est donc la droite vectorielle engendrée par le vecteur $\vec{e_1} = \frac{1}{3} (\vec{i} - 2\vec{j} + 2\vec{k})$.

Comme le noyau de u est de dimension 1, son image est de dimension 2, et on peut choisir comme base de $Im\ u\ \left(\vec{a_1} = -2\vec{i} + 4\vec{j} + 5\vec{k}, \vec{a_2} = 2\vec{i} + 5\vec{j} + 4\vec{k}\right)$

Le produit scalaire de $\vec{e_1}$ par $\vec{a_1}$ ou $\vec{a_2}$ est nul, donc $Im\ u$ est un plan orthogonal à $\ker u$.

Ainsi, u est la projection sur $Im\ u$ parallèlement à $\ker u$, ie. la projection orthogonale sur $Im\ u$.

On a effectivement: $\begin{cases} u(\vec{a_1}) = \vec{a_1} \\ u(\vec{a_2}) = \vec{a_2} \end{cases}$ Choisissons $\vec{e_2} = \frac{1}{\sqrt{2}} \left(\vec{j} + \vec{k} \right)$ et $\vec{e_3} = \frac{1}{3\sqrt{2}} \left(-4\vec{i} - \vec{j} + \vec{k} \right)$. La matrice de u dans cette base est:

$$U' = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

4. On trouve:

$$a(\vec{e_1}) = b(\vec{e_1}) = c(\vec{e_1}) = 0, a(\vec{e_2}) = \vec{e_3}, a(\vec{e_3}) = -\vec{e_2}, b(\vec{e_2}) = -\vec{e_2}, b(\vec{e_3}) = -\vec{e_3}, c(\vec{e_2}) = -\vec{e_3}, c(\vec{e_3}) = \vec{e_2}$$

. Les matrices de a, b, c dans la base $(\vec{e_1}, \vec{e_2}, \vec{e_3})$ sont:

$$A' = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array}\right)$$

$$B' = \left(\begin{array}{ccc} 0 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{array}\right)$$

$$C' = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right)$$

Notons toujours u le projecteur orthogonal sur le plan $P = Vect(\vec{e_2}, \vec{e_3})$ et r la rotation d'axe $Vect(\vec{e_1})$ d'angle $\frac{\pi}{2}$. Alors:

$$a = r o u, b = r^2 o u, c = r^3 o u.$$

5. Soit $\lambda_0, \lambda_1, \lambda_2$ des réels tels que:

$$\sum_{i=0}^{2} \lambda_i \varphi_i = 0.$$

Alors, en prenant successivement $x=0,\pi$ et $\frac{\pi}{2}$, on obtient:

$$\begin{cases} \lambda_0 + \lambda_2 = 0 \\ \lambda_0 - \lambda_2 = 0 \\ \lambda_0 + \lambda_1 = 0 \end{cases}$$

donc $\lambda_0, \lambda_1, \lambda_2$ sont nuls: la famille $(\varphi_0, \varphi_1, \varphi_2)$ est libre.

On a:
$$\begin{cases} d(\varphi_0) = 0 \\ d(\varphi_1) = \varphi_2 \\ d(\varphi_2) = -\varphi_1 \end{cases}$$

donc, comme la dérivation est linéaire, d est bien un endomorphisme de \mathcal{C}_1 . La matrice de d dans la base $(\varphi_0, \varphi_1, \varphi_2)$ est:

$$D = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array}\right) = A'.$$

Problème 2

1. On a:

$$u_1 = 1 = u_1'', u_2 = \frac{1}{2} = u_1', u_3 = \frac{5}{6} = u_2'', u_4 = \frac{7}{12} = u_2', u_5 = \frac{47}{60} = u_3'', u_6 = \frac{37}{60} = u_3''.$$

Pour tout entier naturel n non nul:

$$u'_{n+1} - u'_n = u_{2n+2} - u_{2n} = -\frac{1}{2n+2} + \frac{1}{2n+1} = \frac{1}{(2n+1)(2n+2)}$$

donc la suite (u'_n) est croissante.

$$u_{n+1}'' - u_n'' = u_{2n+1} - u_{2n-1} = \frac{1}{2n+1} - \frac{1}{2n} = -\frac{1}{2n(2n+1)}$$

donc la suite (u''_n) est décroissante.

$$u_n'' - u_n' = u_{2n-1} - u_{2n} = \frac{1}{2n}$$

donc la suite $(u''_n - u'_n)$ tend vers 0, et donc les suites (u'_n) et (u''_n) sont adjacentes.

Les suites réelles (u'_n) et (u''_n) convergent donc vers une même limite l, et la suite (u_n) converge aussi vers l.

- 2. Comme ci-dessus, les suites (v_{2n}) et (v_{2n-1}) sont adjacentes donc la suite (v_n) est convergente.
- 3. On a:

$$I_0 = \int_0^1 \frac{1}{1+x^2} dx = \left[\arctan x\right]_0^1 = \frac{\pi}{4}$$

$$I_0 = \int_0^1 \frac{x}{1+x^2} dx = \left[\frac{1}{2}\ln(1+x^2)\right]_0^1 = \frac{1}{2}\ln 2$$

Il est clair que:

$$I_{p+2} + I_p = \int_0^1 \frac{x^p + x^{p+2}}{1 + x^2} dx = \int_0^1 x^p dx = \frac{1}{p+1}$$

donc

$$I_2 = 1 - \frac{\pi}{4}, I_3 = \frac{1}{2}(1 - \ln 2)$$

4. Remarquons que: $u_1 + 2(-1)^1 I_3 = \ln 2$.

Pour q supérieur ou égal à 1:

$$u_{q+1} + 2(-1)^{q+1}I_{2q+3} = u_q + 2(-1)^q I_{2q+1} + \frac{(-1)^q}{q} + 2(-1)^{q+1}(I_{2q+3} + I_{2q+1})$$
$$u_{q+1} + 2(-1)^{q+1}I_{2q+3} = u_q + 2(-1)^q I_{2q+1}$$

De même: $v_1 + (-1)^1 I_2 = \frac{\pi}{4}$

Pour q supérieur ou égal à 1:

$$v_{q+1} + (-1)^{q+1}I_{2q+2} = v_q + (-1)^q I_{2q} + \frac{(-1)^q}{2q+1} + (-1)^{q+1}(I_{2q+2} + I_{2q}) = v_q + (-1)^q I_{2q}$$

5. Pour tout entier naturel p:

$$0 \le I_p \le \int_0^1 x^p dx = \frac{1}{p+1}$$

donc la suite (I_p) converge vers 0.

Ainsi la suite (u_n) converge vers $\ln 2$ et la suite (v_n) converge vers $\frac{\pi}{4}$.

6. On a:

$$pI_p = \int_0^1 (px^{p-1}) \frac{x \, dx}{1+x^2} = \left[x^p \frac{x}{1+x^2} \right]_0^1 - \int_0^1 x^p \frac{1-x^2}{1+x^2} dx$$

et $\int_0^1 x^p \frac{1-x^2}{1+x^2} dx$ tend vers 0 lorsque p tend vers $+\infty$, donc (pI_p) tend vers $\frac{1}{2}$.

7. On a:

$$J_{1,q} = \int_0^1 \frac{x}{(1+x^2)^q} dx = \begin{cases} \frac{1}{2} si \ q = 0\\ \left[\frac{1}{2} \ln(1+x^2)\right]_0^1 = \frac{1}{2} \ln 2 \ si \ q = 1\\ \left[\frac{1}{2(1-q)} (1+x^2)^{-q+1}\right]_0^1 = \frac{1}{2(q-1)} (1-2^{-q+1}) \ si \ q \ge 2 \end{cases}$$

De même:

$$J_{0,q} = \int_0^1 \frac{1}{(1+x^2)^q} dx = \begin{cases} 1 & \text{si } q = 0\\ [\arctan x]_0^1 = \frac{\pi}{4} & \text{si } q = 1 \end{cases}$$

Pour q = 2:

$$J_{0,1} = \int_0^1 \frac{1+x^2}{(1+x^2)^2} dx = J_{0,2} + \int_0^1 x \frac{x}{(1+x^2)^2} dx$$
$$J_{0,2} = \frac{\pi}{4} + \left[x \frac{1}{2(1+x^2)} \right]_0^1 - \int_0^1 \frac{dx}{2(1+x^2)}$$

soit $J_{0,2} = \frac{\pi}{8} + \frac{1}{4}$. Pour q = 3: $J_{0,3} = \frac{1}{4} + \frac{3\pi}{32}$. Pour $p \ge 2$ et $q \ge 1$, on a:

$$J_{p,q} = \int_0^1 \frac{x^p + x^{p-2} - x^{p-2}}{(1+x^2)^q} dx = J_{p-2,q-1} - J_{p-2,q}$$

ce qui donne:

	p = 0	p = 1	p=2	p=3
q = 0	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$
q = 1	$\frac{\pi}{4}$	$\frac{1}{2}\ln 2$	$1 - \frac{\pi}{4}$	$\frac{1}{2} - \frac{1}{2} \ln 2$
q=2	$\frac{\pi}{8} + \frac{1}{4}$	$\frac{1}{4}$	$\frac{\pi}{8} - \frac{1}{4}$	$\frac{1}{2} \ln 2 - \frac{1}{4}$
q=3	$\frac{3\pi}{32} + \frac{1}{4}$	$\frac{3}{16}$	$\frac{\pi}{32}$	$\frac{1}{16}$