Mines-Ponts Maths 1 MP

Première Partie

1. Fonction E

(a) Pour tout réel y, $e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!}$, donc

$$\forall x \in \mathbb{R}, \quad E(x) = \sum_{k=0}^{+\infty} \frac{e^{kx}}{k!} = \sum_{k=0}^{+\infty} \left(\sum_{n=0}^{+\infty} \frac{(kx)^n}{k! \, n!}\right).$$

Posons $u_{k,n} = \frac{k^n \, x^n}{k! \, n!}$. La série $(\sum |u_{k,n}|)_{n \in \mathbb{N}}$ est convergente de somme $\frac{e^{k|x|}}{k!}$ et $\left(\sum \frac{e^{k|x|}}{k!}\right)_{k \in \mathbb{N}}$ est convergente (de somme E(|x|)), donc la famille $(u_{k,n})_{(k,n) \in \mathbb{N}^2}$ est sommable et le théorème de Fubini permet d'intervertir l'ordre des sommations, soit :

$$\forall x \in \mathbb{R}, \quad E(x) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{+\infty} \frac{(kx)^n}{k! \, n!} \right) = \sum_{n=0}^{+\infty} \frac{x^n}{n!} \, \left(\sum_{k=0}^{+\infty} \frac{k^n}{k!} \right).$$

Ainsi E est développable en série entière sur \mathbb{R} .

- (b) Etant développable, E est de classe C^{∞} sur \mathbb{R} et pour tout n, le coefficient de degré n de la série entière vaut $\frac{E^{(n)}(0)}{n!}$, i.e $A_n = \sum_{k=0}^{+\infty} \frac{k^n}{k!}$.
- (c) $\forall x \in \mathbb{R}, \ E'(x) = e^x \, E(x)$ d'où par la formule de Leibniz:

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ E^{(n+1)}(x) = \sum_{k=0}^{n} C_n^k e^x E^{(k)}(x) \text{ soit en prenant } x = 0: \quad \underline{A_{n+1} = \sum_{k=0}^{n} C_n^k A_k}.$$

 $A_0 = E(0) = e = e B_0$. Les suites $\left(\frac{A_n}{e}\right)$ et (B_n) coı̈ncident pour n = 0 et vérifient la même relation de récurrence, ce qui entraine par récurrence immédiate que $B_n = \frac{1}{e} A_n$.

2. Comparaison de sommes infinies:

(a) p est ici fixé. $R_{p,n} \ge u_p.p^n$ par positivité des u_k .

$$0 \le \frac{U_n - R_{p,n}}{R_{p,n}} = \frac{\sum_{k=1}^{p-1} u_k k^n}{R_{p,n}} \le \sum_{k=1}^{p-1} \frac{u_k}{u_p} \left(\frac{k}{p}\right)^n \xrightarrow[n \to \infty]{} 0$$

car la somme comporte p-1 termes dont chacun a pour limite 0.

Ainsi,
$$U_n \underset{n \to +\infty}{\sim} R_{p,n}$$
.

(b) Soit $\varepsilon > 0$. $u_n \sim v_n$, donc il existe $p \in \mathbb{N}$ tel que $\forall k \geq p$, $\left| u_k - v_k \right| \leq \varepsilon \, v_k$. Un tel p étant fixé, posons $R_{p,n}(u) = \sum_{k=p}^{+\infty} u_k \, k^n$ et $R_{p,n}(v) = \sum_{k=p}^{+\infty} v_k \, k^n$. On a $\left| R_{p,n}(u) - R_{p,n}(v) \right| = \left| \sum_{k=p}^{+\infty} (u_k - v_k) \, k^n \right| \leq \sum_{k=p}^{+\infty} \left| u_k - v_k \right| \, k^n \leq \varepsilon \, \sum_{k=p}^{+\infty} v_k \, k^n = \varepsilon \, R_{p,n}(v) \leq \varepsilon \, V_n$. Par la question précédente, $U_n \underset{n \to +\infty}{\sim} R_{p,n}(u)$ et $V_n \underset{n \to +\infty}{\sim} R_{p,n}(v)$, donc il existe n_0 tel que $\forall n \geq n_0, \, \left| R_{p,n}(u) - U_n \right| \leq \varepsilon \, U_n$ et $\left| R_{p,n}(v) - V_n \right| \leq \varepsilon \, V_n$, ce qui implique $\forall n \geq n_0, \, \left| U_n - V_n \right| \leq \left| U_n - R_{p,n}(u) \right| + \left| R_{p,n}(u) - R_{p,n}(v) \right| + \left| R_{p,n}(v) - V_n \right| \leq \varepsilon \, U_n + 2\varepsilon \, V_n$. D'où $\frac{1-2\varepsilon}{1+\varepsilon} V_n \leq U_n \leq \frac{1+2\varepsilon}{1-\varepsilon} V_n$, d'où $\frac{U_n}{V_n} \xrightarrow[n_{\to +\infty}]{} 1$, i.e. $U_n \underset{n \to +\infty}{\sim} V_n$.

Remarque: On pouvait raccourcir la rédaction en traitant les questions a et b simultanément.

3. Fonction f_n :

- (a) $s_k \ge 0$ et $\ln(k^2 s_k) = k + (-k + n + \frac{3}{2}) \ln k \xrightarrow[k \to +\infty]{} -\infty$ donc $s_k = o\left(\frac{1}{k^2}\right)$ et la série à termes positifs $(\sum s_k)$ converge.
- (b) On pose $u_k = e^k k^{-k-1/2}$ et $v_k = \frac{\sqrt{2\pi}}{k!}$. Par la formule de Stirling, $u_k \sim v_k$. Les séries à termes positifs $\left(\sum u_k k^n\right)_{k\in\mathbb{N}}$ et $\left(\sum v_k k^n\right)_{k\in\mathbb{N}}$ convergent donc d'après 2b, $S_n \sim \sqrt{2\pi} \sum_{n\to\infty}^{\infty} \frac{k^n}{k!}$, d'où $A_n \underset{n\to\infty}{\sim} \frac{1}{\sqrt{2\pi}} \sum_{k=0}^{\infty} f_n(k)$.

Deuxième Partie

1. Étude de la fonction Φ_{λ} :

- (a) $\Phi_{\lambda}(x) \sim \lambda \ln x$, $\Phi_{\lambda}(x) \sim -x \ln x$.
- (b) Φ_{λ} est indéfiniment dérivable sur $]0, +\infty[$. $\Phi'_{\lambda}(x) = -\ln x + \frac{\lambda}{x}$, fonction strictement décroissante de $]0, +\infty[$ sur \mathbb{R} (car $\lim_{x\to 0^+} \Phi'_{\lambda}(x) = +\infty$ et $\lim_{x\to +\infty} \Phi'_{\lambda}(x) = -\infty$) et donc il existe un unique $\mu \in \mathbb{R}_+^*$ tel que $\Phi'_{\lambda}(\mu) = 0$ d'où le tableau de variations :

l	x	0		μ		$+\infty$
	$\Phi_{\lambda}(x)$	-	$-\infty$	$\Phi_{\lambda}(\mu)$	/	$-\infty$

(c) $\mu = \varphi(\lambda)$ est l'unique solution de l'équation $x \ln x = \lambda$.

La fonction $\psi: x \mapsto x \ln x$ est de classe C^1 sur $]1, +\infty[$, à dérivée strictement positive donc est un C^1 difféomorphisme de $]1, +\infty[$ sur son image $]0, +\infty[$. $\varphi = \psi^{-1}$ est donc de classe C^1 sur $]0, +\infty[$.

Preuve de la relation admise:

On forme la différence $\Delta = \Phi_{\lambda}(\mu(1+x)) - \Phi_{\lambda}(\mu) - (\mu - \lambda)(x - \ln(1+x)) + \mu x \ln(1+x)$. $\Delta = -\mu(1+x) \ln \mu - \mu(1+x) \ln(1+x) + \mu(1+x) + \lambda \ln \mu + \lambda \ln(1+x) + \mu \ln \mu - \mu - \lambda \ln \mu - \mu + \lambda \ln \mu$ $\mu x + \mu \ln(1+x) + \lambda x - \lambda \ln(1+x) + \mu x \ln(1+x) = -\mu x \ln \mu + \lambda x = 0 \text{ car } \lambda = \mu \ln \mu.$

A noter que cette égalité est vraie non seulement pour x>0 mais pour x>-1, ce qui sert dans la question III.1.c.

2. Maximum de la fonction f_n :

(a) Pour $x>0,\ f_n(x)=\exp[\Phi_{n-\frac{1}{2}}(x)]$ donc f_n admet un maximum sur $]0,+\infty[$ en un unique point $\mu_n = \varphi(n - \frac{1}{2})$. f_n étant nulle sur $] - \infty, 0[$, $f_n(\mu_n)$ est le maximum de f_n sur \mathbb{R} . f_n est de classe C^1 sur $]-\infty,0[$ et $]0,+\infty[$, $f_n(x) \underset{x\to 0_+}{\sim} x^{n-\frac{1}{2}}$ donc $f'_n(x) \underset{x\to 0_+}{\sim} (n-\frac{1}{2})x^{n-\frac{3}{2}}$ Si $n=1, f_n$ n'est pas dérivable à droite en 0.

Si $n \geq 2$, les dérivées à gauche et à droite en 0 sont nulles, donc f_n est C^1 sur \mathbb{R} .

(b) i. Φ'_{λ} est strictement décroissante et $\mu_n = \Phi'_{n-\frac{1}{2}}^{-1}(0)$.

$$\Phi'_{\frac{1}{2}}(1) = \frac{1}{2} > 0 \text{ et } \Phi'_{\frac{1}{2}}(2) = -\ln 2 + \frac{1}{4} < 0 \text{ donc } 1 < \mu_1 < 2.$$

$$\Phi'_{\frac{3}{2}}(2) = -\ln 2 + \frac{3}{4} > 0 \text{ donc } 2 < \mu_2.$$

Pour $n \ge 3$, $\Phi'_{n-\frac{1}{2}}(n) = -\ln n + \frac{n-\frac{1}{2}}{n} = 1 - \frac{1}{2n} - \ln n < 0$ et $\Phi'_{n-\frac{1}{2}}(\sqrt{n}) = \sqrt{n} - \frac{1}{2\sqrt{n}} - \ln \sqrt{n} > 0$ (car la fonction $\alpha : x \mapsto x - \frac{1}{2x} - \ln x$ est croissante

sur $[1, +\infty[$ et $\alpha(1) > 0$ donc $\alpha(\sqrt{n}) > 0$) donc $\sqrt{n} < \mu_n < n$. ii. $\mu_n \ln \mu_n = n - \frac{1}{2}$ et $\ln \mu_n > \ln \sqrt{n}$ donc $\frac{\mu_n}{n} \le \frac{1}{\ln \sqrt{n}}$ donc $\mu_n = o(n)$.

iii. Pour $\alpha \in]0,1[, \frac{n^{\alpha}}{\mu_n} = \frac{n^{\alpha}}{n - \frac{1}{2}} \ln \mu_n < \frac{n^{\alpha}}{n - \frac{1}{2}} \ln n \xrightarrow[n \to \infty]{} 0 \quad \text{donc } n^{\alpha} = o(\mu_n).$ m02mm1cc.tex - page 2

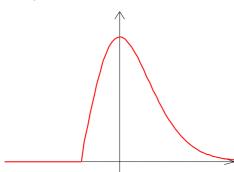
Troisième Partie

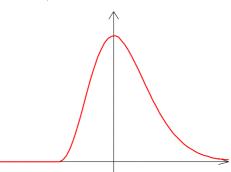
1. Propriétés de la fonction g_n :

(a)
$$g_n(\frac{\sqrt{n}}{\mu_n}x - \sqrt{n}) = \frac{1}{f_n(\mu_n)}f_n\left(\mu_n\left(1 + \frac{1}{\sqrt{n}}(\frac{\sqrt{n}}{\mu_n}x - \sqrt{n})\right)\right) = \frac{f_n(x)}{f_n(\mu_n)}.$$

(b) D'après 2a, le graphe de f est de la forme

 $\mu_n, n=1$





Pour avoir l'allure du graphe de g_n , il suffit de pratiquer des homothéties sur les axes de coordonnées.

$$g_n = 0 \text{ sur }]-\infty, -\sqrt{n}], \quad \sup_{[-\sqrt{n}, +\infty[} g_n = g_n(0) = 1.$$

(c) Soit x un réel, et n_1 un entier tel que $x > -\sqrt{n_1}$.

 $\forall n \geq n_1, \ \ln g_n(x) = \ln f_n\left(\mu_n(1+\frac{x}{\sqrt{n}})\right) - \ln f_n(\mu_n) = \Phi_{n-\frac{1}{2}}\left(\mu_n(1+\frac{x}{\sqrt{n}})\right) - \Phi_{n-\frac{1}{2}}(\mu_n)$. D'après l'égalité admise au II.1,

 $(*) \ln g_n(x) = \left(\mu_n - (n - \frac{1}{2})\right) \left(\frac{x}{\sqrt{n}} - \ln(1 + \frac{x}{\sqrt{n}})\right) - \mu_n \frac{x}{\sqrt{n}} \ln(1 + \frac{x}{\sqrt{n}}) = \left(\mu_n - (n - \frac{1}{2})\right) \left(\frac{x^2}{2n} + o(\frac{1}{n})\right) - \mu_n \frac{x^2}{n}.$

Or $\frac{\mu_n}{n} \xrightarrow[n \to \infty]{} 0$ donc $\ln g_n(x) \xrightarrow[n \to \infty]{} -\frac{x^2}{2}$ et par continuité de l'exponentielle, (g_n) converge

simplement vers la fonction g définie par $g(x) = e^{-\frac{x^2}{2}}$.

- (d) $\diamond \quad \forall t > -1, \ \ln(1+t) \le t \ \text{donc} \ \frac{x}{\sqrt{n}} \ln(1+\frac{x}{\sqrt{n}}) \ge 0$
 - $\diamond \quad \mu_n = o(n) \text{ donc } \exists n_0, \ \forall n \ge n_0, \ \mu_n \frac{n}{2} + \frac{1}{2} \le 0$
 - $\forall t > -1, \ t \ln(1+t) \ge 0 \ \text{donc} \ \mu_n \frac{x}{\sqrt{n}} \ln(1+\frac{x}{\sqrt{n}}) \ge 0$

Il en résulte que $\forall x > -\sqrt{n}, \ \forall n \geq n_0, \ (\mu_n - \frac{n}{2} + \frac{1}{2}) \left(\frac{x}{\sqrt{n}} - \ln(1 + \frac{x}{\sqrt{n}})\right) - \mu_n \frac{x}{\sqrt{n}} \ln(1 + \frac{x}{\sqrt{n}}) \leq 0$

soit $\left(\mu_n - (n - \frac{1}{2})\right) \left(\frac{x}{\sqrt{n}} - \ln(1 + \frac{x}{\sqrt{n}})\right) - \mu_n \frac{x}{\sqrt{n}} \ln(1 + \frac{x}{\sqrt{n}}) \le -\frac{n}{2} \left(\frac{x}{\sqrt{n}} - \ln(1 + \frac{x}{\sqrt{n}})\right)$

D'après (*), on en déduit : $g_n(x) \le \exp\left(-\frac{n}{2}\left(\frac{x}{\sqrt{n}} - \ln(1 + \frac{x}{\sqrt{n}})\right)\right)$.

2. Une majoration de la fonction g_n :

(a) u est de classe C^1 sur $]-1, +\infty[\setminus\{0\}]$ et $u'(x) = \frac{2(1+x)\ln(1+x) - 2x - x^2}{x^3(1+x)}$.

Soit N(x) le numérateur. Un développement limité en 0 donne $N(x) \underset{x \to 0}{\sim} -\frac{x^3}{3}$ donc $u'(x) \xrightarrow[x \to 0]{} -\frac{1}{3}$.

De plus $u(x) \xrightarrow[x \to 0]{1} \frac{1}{2}$, donc en posant $u(0) = \frac{1}{2}$ et en utilisant le théorème de dérivation d'un prolongement, le prolongement obtenu est de classe C^1 sur $]-1,+\infty[$.

 $N'(x) = 2(\ln(1+x) - x) \le 0$ et N(0) = 0 donc $u' \le 0$ et u décroit sur $]-1, +\infty[$. $u(x) \xrightarrow[x \to +\infty]{} 0$ donc u est positive.

(b) Pour $x \le -\sqrt{n}$, $g_n(x) = 0 \le \exp\left(-\frac{x^2}{4}\right)$. D'après 1d, $g_n(x) \le \exp\left(-\frac{x^2}{2}u(\frac{x}{\sqrt{n}})\right)$.

Pour $-\sqrt{n} \le x \le 0$, u décroit donc $u(\frac{x}{\sqrt{n}}) \ge u(0) = \frac{1}{2}$, soit $g_n(x) \le \exp\left(-\frac{x^2}{4}\right)$.

Pour $x \geq 0$, $\frac{x}{\sqrt{n}} \leq x$, donc $u(\frac{x}{\sqrt{n}}) \geq u(x)$ donc $g_n(x) \leq \exp\left(-\frac{x^2}{2}u(x)\right) = \exp\left(-\frac{1}{2}(x - \ln(1+x))\right)$. mO2mm1cc.tex - page 3

Quatrième Partie

1. Intégrabilité de la fonction g_n :

 g_n est continue sur \mathbb{R} , nulle sur $]-\infty, -\sqrt{n}[$ donc est intégrable sur \mathbb{R}_- . De plus, $x^2g_n(x) \xrightarrow[x \to +\infty]{} 0$, donc g_n est intégrable sur \mathbb{R} .

Pour $n \ge n_0$, $x \le 0 \Rightarrow 0 \le g_n(x) \le e^{-\frac{x^2}{4}}$ qui est intégrable sur $]-\infty,0]$.

$$x \ge 0 \Rightarrow 0 \le g_n(x) \le \exp\left(-\frac{1}{2}(x - \ln(1+x))\right) = \underset{x \to +\infty}{o} \left(\frac{1}{x^2+1}\right)$$
 qui est donc intégrable sur $[0, +\infty[$.

La suite de fonctions positives (g_n) converge simplement vers g et est majorée sur $\mathbb R$ par une fonction intégrable indépendante de n, donc par le théorème de convergence dominée, $I_n \xrightarrow[n \to \infty]{} \int_{\mathbb R} g = \sqrt{2\pi}$.

2. Un encadrement de la somme S_n :

$$f_n \text{ croît sur } [-1, p] \text{ donc } \forall k \in [0, p], \int_{k-1}^k f_n(t) dt \leq f_n(k) \text{ et } \forall k \in [0, p-1], f_n(k) \leq \int_{k}^{k+1} f_n(t) dt$$

donc
$$\int_0^p f_n(t) dt \le \sum_{k=1}^p f_n(k) \le f_n(p) + \int_0^p f_n(t) dt$$
.

$$f_n$$
 décroît sur $[p+1, +\infty[$ donc $\forall k \geq p+1, \int_k^{k+1} f_n(t) dt \leq f_n(k)$ et $\forall k \geq p+2, f_n(k) \leq \int_{k-1}^k f_n(t) dt$

donc
$$\int_{p+1}^{+\infty} f_n(t) dt \le \sum_{k=n+1}^{+\infty} f_n(k) \le f_n(p+1) + \int_{p+1}^{+\infty} f_n(t) dt$$
.

En sommant,
$$\int_0^{+\infty} f_n(t) dt - \int_p^{p+1} f_n(t) dt \le S_n \le \int_0^{+\infty} f_n(t) dt + f_n(p) + f_n(p+1) - \int_p^{p+1} f_n(t) dt$$

d'où, en posant
$$I'_n = \int_0^{+\infty} f_n(t) dt$$
 et $\Delta_n = f_n(p) + f_n(p+1) + \int_p^{p+1} f_n(t) dt$, on obtient

$$I_n' - \Delta_n \le S_n \le I_n' + \Delta_n$$

D'après III.1.a,
$$I'_n = f_n(\mu_n) \int_0^{+\infty} g_n\left(\frac{\sqrt{n}}{\mu_n}t - \sqrt{n}\right) dt = f_n(\mu_n) \frac{\mu_n}{\sqrt{n}} \int_{-\sqrt{n}}^{+\infty} g_n(x) dx$$

d'où
$$I'_n = K_n I_n$$
 en posant $K_n = \frac{\mu_n f_n(\mu_n)}{\sqrt{n}}$.

 $f_n(\mu_n)$ étant le maximum de la fonction f_n , on a $\Delta_n \leq 3f_n(\mu_n)$. On pose $\varepsilon_n = \frac{\Delta_n}{K_n}$ de sorte que

$$0 \le \varepsilon_n \le \frac{3\sqrt{n}}{\mu_n}$$
, et d'après II.2.b.iii, $\varepsilon_n \xrightarrow[n \to \infty]{} 0$.

Finalement, $K_n(I_n - \varepsilon_n) \leq S_n \leq K_n(I_n + \varepsilon_n)$.

3. Un équivalent du réel B_n :

D'après la question précédente, $\frac{S_n}{K_n} \xrightarrow[n \to \infty]{} \sqrt{2\pi}$. La partie I nous apprend que $A_n \underset{n \to \infty}{\sim} \frac{S_n}{\sqrt{2\pi}}$ et

$$B_n = \frac{A_n}{e}$$
, donc $B_n \underset{n \to \infty}{\sim} \frac{K_n}{e}$.

Finalement,
$$B_n \underset{n\to\infty}{\sim} \frac{\mu_n f_n(\mu_n)}{e\sqrt{n}}$$
.