ÉCOLE POLYTECHNIQUE

ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES

CONCOURS D'ADMISSION 2002

FILIÈRE PC

DEUXIÈME COMPOSITION DE MATHÉMATIQUES

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Ce problème a pour but principal l'étude des coefficients diagonaux des diverses matrices semblables à une matrice donnée.

On désigne par n un entier ≥ 2 , par $M_n(\mathbf{R})$ l'espace des matrices à coefficients réels, à n lignes et n colonnes, et par I la matrice identité; on appelle scalaires les matrices de la forme λI où λ est un réel. On rappelle que deux matrices A et B sont dites semblables s'il existe une matrice inversible Q vérifiant $B = QAQ^{-1}$, c'est-à-dire si A et B représentent un même endomorphisme de \mathbf{R}^n dans deux bases de \mathbf{R}^n .

Première partie

- 1. Démontrer les assertions suivantes:
 - a) Si une matrice A est non scalaire, il existe un vecteur X de \mathbb{R}^n , non nul et non vecteur propre pour A.
 - b) Soit $A \in M_n(\mathbf{R})$, i et $j \in \{1, ..., n\}$. Il existe une matrice B semblable à A telle que

$$b_{i,i} = a_{i,j}$$
, $b_{i,j} = a_{i,i}$, $b_{k,k} = a_{k,k}$ pour tout $k \neq i, j$.

Deuxième partie

- **2.** On se donne une matrice A de $M_n(\mathbf{R})$ de trace nulle et on se propose de démontrer qu'il existe une matrice B semblable à A ayant tous ses coefficients diagonaux nuls.
 - a) Montrer que si A est non nulle, il existe une base $(X_1,...,X_n)$ de \mathbb{R}^n telle que $AX_1=X_2$.
 - b) Conclure en procédant par récurrence sur n.
- 3. Applications numériques. Dans chacun des cas considérés, on indiquera une matrice B répondant à la question et une base qui lui correspond.
 - a) n = 2, A est diagonale avec coefficients diagonaux 1, -1.
 - b) n = 3, A est diagonale avec coefficients diagonaux 1, 0, -1.

4. Soit A une matrice de $M_n(\mathbf{R})$ non scalaire.

Montrer qu'il existe une matrice B semblable à A avec coefficients diagonaux de la forme (t, 0, ..., 0), et exprimer t en fonction des coefficients diagonaux de A.

5. Soit A une matrice de $M_n(\mathbf{R})$ non nulle. Montrer qu'il existe une matrice B semblable à A avec coefficients diagonaux tous non nuls.

Troisième partie

On dira que deux matrices A et B de $M_n(\mathbf{R})$ sont orthosemblables s'il existe une matrice orthogonale Q vérifiant $B = QAQ^{-1}$, c'est-à-dire si A et B représentent un même endomorphisme de \mathbf{R}^n dans deux bases orthonormales de \mathbf{R}^n . Pour toute matrice A on pose

$$f(A) = \sup\{|a_{i,i} - a_{j,j}| : i, j = 1, ..., n\}$$
.

On se donne une matrice A et on se propose de démontrer qu'il existe une matrice B, orthosemblable à A et ayant tous ses coefficients diagonaux égaux.

- **6.** Démontrer l'assertion dans le cas où n=2.
- 7. On suppose maintenant n quelconque et les $a_{i,i}$ non tous égaux.
 - a) Montrer qu'on peut supposer $f(A) = |a_{1,1} a_{2,2}|$.
 - b) Construire une matrice A', orthosemblable à A et telle que

$$a'_{1,1} = a'_{2,2}$$
 , $a'_{i,i} = a_{i,i}$ $\forall i \ge 3$, $|a'_{1,1} - a'_{i,i}| < f(A)$ $\forall i \ge 3$.

c) Construire une matrice A'', orthosemblable à A et telle que f(A'') < f(A).

On désigne par $O_n(\mathbf{R})$ l'ensemble des matrices orthogonales, et par E_A celui des matrices orthosemblables à A.

8.

- a) Montrer que E_A est une partie compacte de \mathbf{R}^{n^2} .
- b) Montrer que la restriction de la fonction $f \ge E_A$ atteint son minimum.
- c) Conclure.
- **9.** Application numérique. On prend n = 3 et A diagonale avec coefficients diagonaux (1,0,0); on note A_m , m = 0, 1, ... les matrices successives obtenues par la méthode précédente, de sorte que

$$diag(A_0) = (1, 0, 0)$$
 , $diag(A_1) = \left(\frac{1}{2}, \frac{1}{2}, 0\right)$, $diag(A_2) = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$, etc.

Déterminer $f(A_m)$ et les coefficients diagonaux de A_m .

Quatrième partie

On munit \mathbb{R}^n de son produit scalaire usuel noté (.|.) et de la norme correspondante $\|.\|$. Pour toute matrice A de $M_n(\mathbb{R})$ on pose

$$R(A) = \{(AX|X) : ||X|| = 1\}.$$

- 10. Démontrer les assertions suivantes:
 - a) R(A) contient les valeurs propres réelles de A ainsi que ses coefficients diagonaux.
 - b) R(A) est un intervalle fermé borné de \mathbf{R} .
 - c) Si A est symétrique et de trace nulle, le nombre 0 appartient à R(A).
- 11. Montrer que si la trace t de A appartient à R(A), il existe une matrice B orthosemblable à A avec coefficients diagonaux (t, 0, ..., 0).

Cinquième partie

On note Sp(A) l'ensemble des valeurs propres d'une matrice A.

- 12. On se donne une matrice non nulle A de $M_n(\mathbf{R})$ et on note B une matrice semblable à A ayant tous ses coefficients diagonaux non nuls.
 - a) Trouver une matrice Y telle que l'on ait

$$Sp(Y) = \{1\}$$
 et $Sp(B+Y) \cap Sp(Y) = \emptyset$

b) Construire une matrice X non nulle telle que l'on ait

$$Sp(A+X) \cap Sp(X) = \emptyset$$

- 13. On désigne par T une application linéaire de $M_n(\mathbf{R})$ dans lui-même qui transforme toute matrice inversible en une matrice inversible.
 - a) Vérifier que l'on a

$$Sp\left(T\left(I\right)^{-1}T\left(A\right)\right)\subset Sp\left(A\right)$$

b) Montrer que l'application T est inversible.

* *